11112223333

Hyperbolic Compressible Navier-Stokes equations

发布人:日期:2020年10月28日 20:48浏览数:

报告题目:Hyperbolic Compressible Navier-Stokes equations

报 告 人:胡玉玺副教授(中国矿业大学(北京))

报告时间:202010309:30-10:20

报告地点:数统院307学术报告厅

报告摘要:

We consider the non-isentropic compressible Navier-Stokes equations with hyperbolic heat conduction and a law for the stress tensor which is modified correspondingly by Maxwell’s law. These two relaxations, turning the whole system into a hyperbolic one, are not only treated simultaneously, but are also considered in a version having Galilean invariance. For this more complicated relaxed system, the global well-posedness is proved for small data. Moreover, for vanishing relaxation parameters the solutions are shown to converge to solutions of the classical system.

报告人简介:

胡玉玺,2013年上海交通大学博士毕业,之后在北京应用物理与计算数学研究所做博士后研究,2015年至今在中国矿业大学(北京)工作,任讲师,副教授。主要工作是对可压缩流体以及热弹性力学的双曲松弛逼近模型做了初步的数学理论分析,文章发表在JDE,JMFM,JHDE,AML,JMP,ZAMP,QAM等杂志上。

上一条:Some results for the convergence of Euler-Voigt equations to Euler equations

下一条:Recent results on well-posedness of polymeric fluid models

【关闭】 打印    收藏