报告题目:Harish-Chandra modules for divergence zero vector fields.
报 告 人:李志强(信阳师范学院)
报告时间:2020年11月4日 11:00
报告地点:数统院5楼数学研究中心
报告摘要:
The Lie algebra of divergence zero vector fields on a torus is an infinite dimensional Lie algebra of skew derivations over the ring of Laurent polynomials. We consider the semidirect product of the Lie algebra of divergence zero vector fields on a torus with the algebra of Laurent polynomials. In this talk, we prove that a Harish-Chandra module of the universal central extension of the derived Lie subalgebra of this semidirect product is either a uniformly bounded module or a generalized highest weight module. Furthermore, we classify all the generalized highest weight Harish-Chandra modules.
报告人简介:
李志强,博士,2018年毕业于厦门大学,现为信阳师范学院讲师。主要从事高维放射李代数及其相关的无穷维李代数的表示理论,已经在Journal of Algebra, Pacific Journal of Mathematics, Science China Mathematics等杂志上发表多篇论文。主持国家青年基金1项。