11112223333

The Plateau problem in metric spaces and applications

发布人:日期:2021年03月15日 19:29浏览数:

报告题目:The Plateau problem in metric spaces and applications

报 告 人:郭常予教授(山东大学数学与交叉科学研究中心)

报告时间:2021319日  10:00-11:00

报告地点:数统院5楼数学研究中心多功能研讨室

报告摘要:

The classical parametrized Plateau problem asks for existence of an area minimizing surface with givenboundary (typically a Jordan curve).In this talk, we shall review the solution of Douglas in the setting ofEuclidean spaces. Then we shall explain how to formulatc the problem properly in the sctting of a gencralmetric space. In particular, we shall give a brief introduction on the first order metric-valued Sobolev maps.Using this,we shall extend the approach of Douglas to the very general setting of metric spaces. Finally, weshall brictly discuss two applications of such genecralizations.Part of the talk was based on an carlicr jointwork with Prof.Stefan Wenger.

报告人简介:

郭常予,山东大学数学与交叉科学研究中心教授,博士生导师,山东省高层次青年人才。博士毕业于芬兰于韦斯屈莱大学数学与统计学院,师从芬兰科学院院士Pekka Koskela教授。

主要研究方向为单复变函数论-几何函数论,以及其与奇异度量测度空间上的分析与几何的关联。特别的,研究各类几何映照(如拟共形映照、拟正则映照、调和映照等)的解析与拓扑性质。已在Tran. Amer. Math. Soc., Comm. Anal. Geom., J. Lond. Math. Soc.等相关领域期刊发表20余篇论文。

上一条:Approximation based on orthogonal polynomials and their roots

下一条:A Truly Exact Perfect Absorbing Layer for Time-Harmonic Wave Scattering Problems

【关闭】 打印    收藏