11112223333

微分方程与动力系统系列学术报告:Some progress on Leray problem for flows in an infinitely long nozzle

发布人:日期:2021年12月16日 11:30浏览数:

报告题目:Some progress on Leray problem for flows in an infinitely long nozzle

报 告 人:谢春景教授(上海交通大学)

报告时间:20211220日  10:30

报告地点:腾讯会议(161186240

报告摘要:

In this talk, we discuss the recent progress on Leray problem for incompressible Navier- Stokes system in an infinitely long nozzle. The key problem is to study the uniqueness and uniform structural stability of Poiseuille flows in a pipe under no slip boundary conditions or Navier boundary conditions. It is interesting that the estimate is uniform with respect to the fluxes of the flows and even the slip coefficients in the Navier boundary conditions. One of the key ingredients of the analysis is to deal with the case with large flux and intermediate frequency in terms of the Fourier variable.

报告人简介:

谢春景,上海交通大学教授,2007年博士毕业于香港中文大学,在2011年加入上海交通大学之前,在香港中文大学和密西根大学做博士后。研究兴趣集中于高维流体动力学方程组的适定性研究,特别是Euler方程组及其相关模型的亚音速解与跨音速解问题,高维Euler方程组弱解的不唯一性、以及管道中定常Navier-Stokes方程组的适定性等。在Advances in Mathematics, Archive for Rational Mechanics and Analysis, Communications in Mathematical Physics等杂志发表多篇论文。

上一条:Extremal problems for graphical function-index and f-weighted adjacency matrix

下一条:分析系列学术报告:Lp-theory for Cauchy-transform on the unit disk

【关闭】 打印    收藏