11112223333

微分方程与动力系统系列学术报告:Very weak solutions of the Dirichlet problem for the two dimensional Monge-Ampere equation

发布人:日期:2022年05月12日 10:38浏览数:

报告题目:Very weak solutions of the Dirichlet problem for the two dimensional Monge-Ampere equation

报 告 人:曹文涛副研究员(首都师范大学)

报告时间:2022518日  15:00-17:00

报告地点:腾讯会议(799547453

报告摘要:

In this talk, we will talk about the constrution of infinitely many C^{1, a} (a<1/5) very weak solutions to the Dirichlet problem for the two dimensional Monge-Amp\`{e}re equation. They are obtained from inductive Nash-Kuiper construction of subsolutions satisfying the boundary condition. The building of initial subsolutions is the key difficulty and they are generating from the solutions of some Possion equations. The inductive construction is then attained by adding compactly supported deficit matrix.

报告人简介:

曹文涛,首都师范大学副研究员,研究方向为非线性偏微分方程,包括流体力学方程和等距嵌入等。相关成果发表在J.Differential eometry., Arch.Ration.Mech.Anal., Comm.Partial Differential Equations.等著名数学期刊。

上一条:概率统计系列学术报告:大尺度脑网络上的临界行为

下一条:麓山数学教育论坛(第十九讲)

【关闭】 打印    收藏