报告题目:L1-convergence to Barenblatt solution for compressible Euler equations with damping
报 告 人:耿世锋教授(湘潭大学)
报告时间:2022年7月30日 17:00-18:00
报告地点:数学中心智慧教室
报告摘要:
In this talk, the large time behavior of entropy solution to the compressible Euler equations for polytropic gas with damping is investigated. By introducing an elaborate iterative method and using the intensive entropy analysis, it is proved that the $L^\infty$ entropy solution of compressible Euler equations with finite initial mass converges strongly in the natural L1topology to a fundamental solution of porous media equation (PME), called by Barenblatt solution. We get better L1-convergence rate for 2\leq \gamma<3. We further prove the L1 convergence to the Barrenblatts solution for any large \gamma\ (\gamma\geq3).
报告人简介:
耿世锋,博士、教授、博士生导师。湖南省“芙蓉学者奖励计划”青年学者,湘潭大学韶峰学者学术骨干。2011年6月在中国科学院武汉物理与数学研究所获得理学博士学位,专业是应用数学。主要从事可压缩Euler方程组以及相关的流体力学方程的研究工作,在SIAM J.Math. Anal., Comm. Partial Differential Equations, J. Differential Equations等国内外重要学术刊物上发表学术论文多篇。