11112223333

科学计算系列学术报告:An efficient Fourier-Legendre spectral-Galerkin method for problems in 2D complex geometries

发布人:日期:2022年12月06日 19:02浏览数:

报告题目:An efficient Fourier-Legendre spectral-Galerkin method for problems in 2D complex geometries

报 告 人:王中庆教授(上海理工大学)

报告时间:2022128日  14:30

报告地点:腾讯会议(362206288

报告摘要:

A polar coordinate transformation is introduced, which transforms the complex gcomectrics into a unit disc and plays an important role in designing spectral-Galerkin methods for various differential equations in two-dimensional complex geometries. Some basic properties of the polar coordinate transformation are given. As applications, we consider the Helmholtz equation in two-dimensional complex geometries. The existence and uniqueness of the weak solution are proved, the Fourier-Legendre spectral-Galerkin scheme is constructed and the optimal convergence of numerical solutions under SH^ 1$-norm is analyzed. The proposed method is very effective and easy to implement for problems in 2D complex geometries. Numerical results are presented to demonstrate the high accuracy.

报告人简介:

王中庆,上海理工大学教授、博导,上海市曙光学者。主要从事偏微分方程谱方法的研究工作,在《Found. Comput. Math.》《SIAM J. Numer. Anal.》和《Math. Comp.》等国内外学术期刊上发表论文90余篇,主持和参与科研项目20余项。

上一条:科学计算系列学术报告:A NGO-based numerical scheme for Maxwell-Bloch system

下一条:科学计算系列学术报告:Space-Time Spectral Methods and Eigenvalue Analysis of Related Spectral Differentiation Matrices for IVPs

【关闭】 打印    收藏