11112223333

代数数论几何系列学术报告:Derived recollements for infinitely generated tilting module

发布人:日期:2022年12月09日 11:00浏览数:

报告题目:Derived recollements for infinitely generated tilting module

报 告 人:陈红星教授(首都师范大学)

报告时间:20221214日  16:00

报告地点:腾讯会议(109221859

报告摘要:

Tilting theory is one of the most important theories in the representation theory of algebras. In the general context of tilting theory, a central theme is to study relations between the derived module categories of the given algebras and the endomorphism algebras of tilting modules. In the talk, we introduce symmetric subcategories and show that for any good tilting module T over an algebra A, the derived category of the endomorphism algebra B of T is a recollement of the derived categories of A and a symmetric subcategory of the module category of B, in the sense of Beil inson-Bernstein-Deligne. Thus the kernel of the total left-derived tensor functor induced by a good tilting module is always triangle equivalent to the derived category of a symmetric subcategory of a module category. Explicit description of symmetric subcategories associated to a class of good 2- -tilting modules over commutative Gorenstein local rings are presented. This is joint work with Changchang Xi.

报告人简介:

陈红星,首都师范大学教授,2021年获国家自然科学基金优秀青年科学基金。曾获教育部学术新人奖,入选北京市科技新星计划。曾主持国家自然科学基金面上、青年项目、北京市自然科学基金青年项目、中国博士后科学基金,并参与国家自然科学基金重点项目和北京市教育委员会科技计划重点项目。主要从事代数表示论和同调代数的研究,在同调猜想、导出范畴、无限维倾斜理论、代数K-理论等方面取得了一系列的研究成果,彻底解决了关于导出模范畴Jordan-Holder定理存在性问题。研究成果发表在Proc. Lond. Math. Soc.J. London. Math. Soc.Math. Proc. Cambridge Philos. Soc.Israel J. Math.Int Math Res NoticesJ. Algebra等国际知名数学杂志。

上一条:代数数论几何系列学术报告:Deformations and homotopy theory of operated algebras

下一条:代数数论几何系列学术报告:From algebraically closed fields to arbitrary fields

【关闭】 打印    收藏