报告题目:The uniform existence time and Zero-Alpha limit problem of the Euler-Poincaré equations
报 告 人:李敏(江西财经大学)
报告时间:2025年4月19日 10:00-11:00
报告地点:格物楼528
报告摘要:
We consider the Cauchy problem of the Euler-Poincaré equations in $\mathbb{R}^d$ with a varying dispersion parameter $\alpha$. Based on the convex entropy structure and the modified commutator estimates, we have proved that the Euler-Poincaré equations have a uniform existence time with respect to $\alpha$ in Sobolev spaces $H^s. $ Combined with the Bona-Simth method, we obtain convergence of the solutions to the Euler-Poincaré equations as $\alpha\to 0$ in the same space where the initial data are located.
报告人简介:
李敏,男,江西财经大学讲师。研究领域为可积非线性偏微分方程,包括浅水波方程及其相关问题的研究。在Journal of Mathematical Fluid Mechanics、Discrete and Continuous Dynamical Systems等刊物发表学术论文多篇。现主持博士后面上基金1项,江西省科学基金2项。