11112223333

微分方程与动力系统系列学术报告:Rigidity of Steady Solutions to the Navier-Stokes Equations in High Dimensions

发布人:日期:2025年09月25日 15:53浏览数:

报告题目:Rigidity of Steady Solutions to the Navier-Stokes Equations in High Dimensions

报 告 人:桂长峰教授(澳门大学)

报告时间:2025928日  10:00

报告地点:格物楼528

报告摘要:

The steady Navier-Stokes equations enjoy a special scaling property thanks to its nonlinear character. Several scaling-invariant classes motivated by the scaling property have proved useful in investigating various properties of a solution. On the other hand, a regularity problem of the steady case in higher dimensions (especially 5D) has attracted the attention of many researchers as it is a steady version of the famous regularity problem for the 3D evolutionary case. One can examine scaling-invariant classes, a borderline case not covered by standard regularity theory, to study special scenarios of a possible singularity. In this talk, we shall present a rigidity result to a most general scaling-invariant class and a reg-ularity result eliminating a more general possibility of singularity for steady Navier-Stokes equations in high dimensions, which also have an implication for Liouville-type theorems in higher dimensions.This is a joint work with Jeaheang Bang, Hao Liu, Yun Wang and Chunjing Xie

报告人简介:

桂长峰,澳门大学数学系讲座教授,数学系主任,博士生导师。1991年在美国明尼苏达大学获博士学位。桂长峰教授曾入选国家级人才计划和海外高层次人才,于2013年当选美国数学会首届会士,获得过IEEE最佳论文奖、加拿大太平洋数学研究所研究成果奖、加拿大数学中心Andrew Aisensdadt等荣誉。桂长峰教授现致力于非线性偏微分方程的研究,特别是在Allen-Cahn方程的研究、Moser-Trudinger不等式最佳常数的猜想、De Giorgi猜想和Gibbons猜想等方面取得了一系列在国际上有影响的工作,在Ann. of Math., Invent. Math., Comm. Pure Appl. Math.,Arch. Ration. Mech. Anal., Adv. Math.等国际顶级期刊上发表论文80余篇。


下一条:微分方程与动力系统系列学术报告:POSITIVE SOLUTION FOR A CRITICAL NEUMANN PROBLEM

【关闭】 打印    收藏