11112223333

微分方程与动力系统系列学术报告:Viral dynamics with immune chemokines

发布人:日期:2025年10月11日 15:43浏览数:

报告题目:Viral dynamics with immune chemokines

报 告 人:舒洪英教授(广州大学)

报告时间:20251016日  16:00-17:20

报告地点:腾讯会议 727691286

报告摘要:

We study a viral infection model incorporating both cell-to-cell infection and immune chemokines. Based on experimental results in the literature, we make a standingassumption that the cytotoxic T lymphocytes (CTL) will move toward the locationwith more infected cells,while the diffusion rate of CTL is a decreasing function of thedensity of infected cells.We first establish the global existence and ultimate boundednessof the solution via a priori energy estimates.We then define the basic reproductionnumber of viral infection R_0 and prove that the infection-free steadystate E_0 is globally asymptotically stable if R_0<1. When R_0>1, thenE_0becomesunstable, and another basic reproduction number of CTL response R_1 becomes thedynamic threshold in the sense that if R_1<1, then the CTL-inactivated steady state E_1 is globally asymptotically stable; and if R_1>1, then the immune response is uniformpersistent and, under an additional technical condition the CTL-activated steady stateE_2 is globally asymptotically stable. To establish the global stability results, we needto prove point dissipativity, obtain uniform persistence, construct suitable Lyapunovfunctions, and apply the LaSalle invariance principle.

报告人简介:

舒洪英,2010年获哈尔滨工业大学博士学位,2008年在加拿大阿尔伯塔大学留学两年,2011年至2014年先后在加拿大新不伦瑞克大学、加拿大瑞尔森大学和约克大学任AARMS博士后研究员。201412月至20256月先后在同济大学、陕西师范大学任特聘教授,博士生导师。20257月至今任广州大学教授,博士生导师。2016年获上海市浦江人才计划,2017年获陕西省百人计划。先后主持2项国家自然科学基金面上项目,1项青年项目,1项上海市自然科学基金项目,1项加拿大科研基金项目。主要研究微分动力系统及其在生物数学上的应用,发表SCI收录论文50余篇,分别发表在J. Math. Pures Appl., SIAM JAM, JDE, Nonlinearity, JDDE, J.Math.Biology,Bulletin Math. Biology等期刊上。任美国数学学会MR评论员、欧洲数学学会zbMATH评论员。

下一条:微分方程与动力系统系列学术报告:Two-Hump Traveling-Wave Solutions of a Diatomic Fermi-Pasta-Ulam-Tsingou Lattice

【关闭】 打印    收藏