11112223333

Optimal decay rates of a non--conservative compressible two--phase fluid model

发布人:日期:2020年11月20日 17:59浏览数:

报告题目:Optimal decay rates of a non-conservative compressible two-phase fluid model

报 告 人:张映辉教授(广西师范大学)

报告时间:20201123日  13:30-14:30

报告地点:腾讯会议(318567841

报告摘要:

We are concerned with the time decay rates of strong solutions to a non-conservative compressible viscous two-phase fluid model in the whole space $\mathbb R^3$. Compared to the previous related works, the main novelty of this paper lies in the fact that it provides a general framework that can be used to extract the optimal decay rates of the solution as well as its all order spatial derivatives from one order to the highest order, which are the same as those of the heat equation. Furthermore, for well chosen initial data, we also show the lower bounds on the decay rates. Our methods mainly consist of Hodge decomposition, low frequency and high frequency decomposition, delicate spectral analysis and energy method based on finite induction.

报告人简介:

张映辉,博士,教授,博士生导师,广西杰出青年基金获得者,广西高等学校中青年骨干教师,广西师范大学A类漓江学者,美国佐治亚理工学院和加拿大不列颠哥伦比亚大学访问学者,美国《数学评论》评论员,国际期刊《SCIREA Journal of Mathematics》编委,现任广西师范大学数学与统计学院副院长。

主要研究方向为偏微分方程理论及其应用。主持国家自然科学基金2项,广西杰出青年科学基金、博士后基金等省部级项目20余项;以独立作者、第一作者或通讯作者身份在SIAM J. Math. Anal., J. London Math. Soc., Indiana U. Math. J., J. Differ. Equations, P. Roy. Soc. Edinb A, Sci. China Math.等国际著名期刊上发表SCI论文40余篇;出版英文学术专著1部;获省自然科学奖和市科技进步奖各1项。

上一条:Stability breaking, concentration breaking and asymptotic analysis in two thermal insulation problems

下一条:以一个课题为例谈研究设计——兼论研究方法运用的一些问题

【关闭】 打印    收藏