11112223333

Stability breaking, concentration breaking and asymptotic analysis in two thermal insulation problems

发布人:日期:2020年11月20日 18:19浏览数:

报告题目:Stability breaking, concentration breaking and asymptotic analysis in two thermal insulation problems

报 告 人:李沁峰副教授(湖南大学)

报告时间:20201123日  8:20-9:20

报告地点:数统院307学术报告厅

报告摘要:

In 2017, Bucur-Buttazzo-Nitsch introduced two thermal insulation problem: the energy problem and the eigenvalue problem. In this talk, I will present the stability and concentration breaking result in the energy problem. I will also show that in the eigenvalue problem, as the total mass of the insulating material goes to the symmetry breaking number of a ball, the product of the total mass and the eigenvalue on the ball converge to exactly the half of its range for $m \in (0,\infty)$. Stability of ball shape is also studied in this problem. This is a joint work with Yong Huang and Qiuqi Li from Hunan University.

报告人简介:

李沁峰,2018年博士毕业于普渡大学,之后在德州大学圣安东尼奥分校做博士后研究,20208月至今在湖南大学工作。主要研究方向是几何测度论、区域变分问题以及非线性偏微分方程,文章发表在IMRN, CVPDE, IUMJ, Adv. CV等杂志上。

上一条:The Green tensor of Stokes system in R_+^n

下一条:Optimal decay rates of a non--conservative compressible two--phase fluid model

【关闭】 打印    收藏