11112223333

0n asymptotically sharp bi-Lipschitz inequalities of quasiconformal mappings satisfying inhomogeneous polyharmonic equations

发布人:日期:2021年05月21日 10:37浏览数:

报告题目:0n asymptotically sharp bi-Lipschitz inequalities of quasiconformal mappings satisfying inhomogeneous polyharmonic equations

报 告 人:陈少林教授(衡阳师范学院)

报告时间:2021521日  15:00-16:00

报告地点:数统院5楼数学研究中心智慧教室

报告摘要:

For two constants K≥1 and K0≥0, suppose that f is a (K, K0)-quasiconformal self-mapping of the unit disk D, which satifies the fllowing: (1) the inhomogencous polyharmonice equation Δnf=Δ(Δn-1f)=φn in D(φnC(D)), (2) the boundary conditions Δn-1f=φn-1,...Δlf=φ1 on T(φj∈C(T)for j{1,...,n- 1} and T denotes the unit cirele), and (3) f(0) = 0, where n≥2 is an integer. The main aim of this paper is to prove that f is Lipschitz continuous, and, further, it is bi-Lipschitz continuous when ||φj||∞ are small enough for j∈{1,...,n}. Morcover, the estimates are asymtically shamp asK→1+, K0→0+ and ||φj||∞→0+ forj∈{1,...,n}.

报告人简介:

陈少林,衡阳师范学院教授,湖南省青年骨干教师。曾在芬兰阿尔托大学、芬兰赫尔辛基大学、芬兰图尔库大学、印度马德拉斯理工学院和印度拉马努金(Ramanu jan)数学研究所做访问学者。


上一条:Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential

下一条:Transformation Properties of Hypergeometric Functions and Their Applications(超几何函数的变换性质及其应用)

【关闭】 打印    收藏