11112223333

微分方程与动力系统系列学术报告:Bounds of nodal sets of eigenfunctions

发布人:日期:2021年11月26日 15:40浏览数:

报告题目:Bounds of nodal sets of eigenfunctions

报 告 人:朱久义助理教授(路易斯安那州立大学)

报告时间:20211130日  10:00

报告地点:腾讯会议(889745653

报告摘要:

Motivated by Yau's conjecture, the study of the measure of nodal sets (Zero level sets) for eigenfunctions has been attracting much attention. We investigate the measure of nodal sets for Steklov, Dirichlet and Neumann eigenfunctions in the domain and on the boundary of the domain. For Dirichlet or Neumann eigenfunctions in the analytic domains, we show some sharp upper bounds of nodal sets which touch the boundary. We will also discuss some upper bounds of nodal sets for eigenfunctions of general eigenvalue problems arising from Chladni patterns, which were discovered more than 200 years ago. Furthermore, some recent study of nodal sets in periodic elliptic homogenization will be discussed. Part of the talk is based on joint work with Carlos Kenig, Fanghua Lin and Jinping Zhuge.

报告人简介:

朱久义,路易斯安那州立大学助理教授。2008年硕士毕业于湖南师范大学。2013年博士毕业于韦恩州立大学。2013-2016年在约翰霍普金斯大学担任JJ. Sylvester Assistant Professor.主要研究方向是偏微分方程。两次获得美国自然科学基金资助,独立PI.AJM, ARMA, Analysis & PDE, CPDE等杂志上发表多篇论文。

上一条:科学计算系列学术报告:A joint bidiagonalization based iterative algorithm for large scale general-form Tikhonov regularization

下一条:组合与运筹系列报告

【关闭】 打印    收藏