11112223333

分析系列学术报告:Teichmuller's problem on Gromov hyperbolic domains

发布人:日期:2021年12月02日 16:50浏览数:

报告题目:Teichmuller's problem on Gromov hyperbolic domains

报 告 人:周青山副教授(佛山科技学院)

报告时间:2021125日  10:00-11:00

报告地点:数学研究中心讨论室以及线上腾讯会议(390426298

报告摘要:

Given a domainD, f is K-quasiconformal self-map of D with identity boundary values. In this talk, we introduce some reent results om Teichmuller's problem which is to determine how far a given point x in D can be mapped under f 。We estimate this distance between x and f() from the above by using two diferent metrics, the ditance ratio metric and the quasithyperbolic metic. We study Teichmuller's problem for Gromow hyperbolic domains with identity values at the boundary of infnity. As applications, we obtain results on Teichmullers problem for quasihyperbolic uniform domains and inner uniform domains.

报告人简介:

周青山博士,佛山科技学院副教授。研究领域为拟共形映射与度量空间上的分析。目前在Isearal J. Math, Stud. Math, J Geom. Anal,. Proc. Amer. Math. Soc, C. R. Math. Acad. Sci. Paris, Ann. Acad. Sci. Fenn. Math. 等国际期刊发表十多篇论文。

上一条:代数、数论与几何系列学术报告:On connected components of skew group algebras

下一条:代数、数论与几何系列学术报告:A tool for studying Gorenstein flat modules

【关闭】 打印    收藏