11112223333

代数、数论与几何系列学术报告:On connected components of skew group algebras

发布人:日期:2021年12月03日 18:52浏览数:

报告题目:On connected components of skew group algebras

报 告 人:林亚南教授

报告时间:2021125日  14:30-15:30

报告地点:数学研究中心报告厅

报告摘要:

Let A be a basic connected finite dimensional associative algebra over an algebraically closed field k and G be a cyclic group. By Reiten-Riedtmann, there is a quiver QG with relations ρG such that the skew group algebras A[G] is Morita equivalent to the quotient algebra of path algebra kQG modulo ideal (ρG). Generally, the quiver QG is not connected. Motivated by Guo's work, we show a method to determine the number of connect components of QG. Meanwhile, we introduce the notion of weight for underlying quiver of A such that A is G-graded and determine the connect components of smash product A#kG*. This is joint work with Jianmin Chen and Qiang Dong.

报告人简介:

林亚南,厦门大学“陈景润数学特聘教授”,数学科学学院原院长,博士生导师。德国Bielefeld大学博士。中央特别支持计划(万人计划)教学名师,教育部教学名师,享受国务院特殊津贴专家,原全国数学专业教学指导委员会委员。《数学文化》《数学研究》编委。

上一条:科学计算系列学术报告:Reaxff分子动力学方法及其在超临界水热反应中的应用

下一条:分析系列学术报告:Teichmuller's problem on Gromov hyperbolic domains

【关闭】 打印    收藏