11112223333

代数、数论与几何系列学术报告:Reachable-in-face property of finite-dimensional algebras

发布人:日期:2022年02月25日 16:05浏览数:

报告题目:Reachable-in-face property of finite-dimensional algebras

报 告 人:刘品副教授(西南交通大学)

报告时间:202233日  14:30-17:30

报告地点:腾讯会议(594987564

报告摘要:

A recent work by Cao-Li confirmed a conjecture about cluster algebras proposed by Fomin-Zelevinsky about twenty years ago, namely, the seeds whose clusters contain particular cluster variables form a connected subgraph of the exchange graph of a cluster algebra. In view of the interplay between cluster algebras and representation theory of finite dimensional algebras, this talk mainly focuses on the support tau-tilting graphs of finite-dimensional algebras, especially finite-dimensional gentle algebras. This is based on the joint work with C. Fu, S. Geng and Y. Zhou.

报告人简介:

刘品,西南交通大学数学学院副教授,博士研究生导师,数学系主任,主要从事代数表示论的研究工作。在 Math. Z.J. AlgebraProc. AMS等知名数学杂志上发表论文十余篇,先后主持国家自然科学基金数学天元基金、青年科学基金和面上项目,2020年获四川省数学会首届基础数学奖二等奖。

上一条:代数、数论与几何系列学术报告:A geometric model of module categories of skew-gentle algebras

下一条:代数、数论与几何系列学术报告:关于西罗平凡模的上同调刻画

【关闭】 打印    收藏