11112223333

是否每个可数无穷图都有一个不友好剖分?

发布人:日期:2022年11月30日 09:44浏览数:

报告题目:是否每个可数无穷图都有一个不友好剖分?

报 告 人:向开南教授(湘潭大学)

报告时间:2022121日  15:30

报告地点:格物楼303学术报告厅

报告摘要:

猜想。每个可数无穷图都有一个不友好顶点二剖分,即每个顶点在自己所属的类里的邻居数不超过在另一个类里的邻居数。这是无穷图论中有30多年历史的最著名猜想之一。从Open Problem Garden (http:/ww openproblemgarden.org/)可以得知,它的重要性为3星;概率论中的KPZ Universality Conjecture、数论中的The 3n+1 Conjecture (The 3x+1 Problem)的重要性也是3星;此处重要性的最高等级为4星,黎曼猜想是4星。

20世纪数学的一个了不起的发展是认识到有时候可以用概率方法来证明一些看起来并没有概率本性的数学命题(N. Alon & M Krivelevich. 2008)。此猜想是否有一个概率论的证明?

报告人简介:

向开南,湖南湘西人,19936月本科毕业于湘潭大学数学系;1993.9-1996.6在北京师范大学数学系读硕士;1996.9-1999.6在中国科学院应用数学研究所读博士;1999.7-2001.6在北京大学数学科学学院做博士后;20016月博士后出站后进入湖南师范大学工作;20073月调往南开大学;20193月回湘潭大学工作;是科学网博客写手(blog.sciencenet.cn/u/MinGong1);当前研究兴趣是群和图上的概率与几何(渗流、lsing模型、随机图、概率组合、随机游走、几何群论、无穷图论)。

上一条:代数数论几何系列学术报告:基于动曲面理论的有理曲面的表示与求交

下一条:Inertia and spectral symmetry of eccentricity matrices of clique trees

【关闭】 打印    收藏