11112223333

分析系列学术报告:Existence of hyperbolic motions to a class of Hamiltonians and generalized N-body system via a geometric approach

发布人:日期:2023年11月27日 15:42浏览数:

报告题目:Existence of hyperbolic motions to a class of Hamiltonians and generalized N-body system via a geometric approach

报 告 人:周渊教授(北京师范大学)

报告时间:20231128日  9:00-10:00

报告地点:理学院五楼数学研究中心报告厅528

报告摘要:

For the classical N-body problem in Rd with d≥2, via KAM theory Maderna-Venturelli in their remarkable paper [Ann. Math. 2020] proved the existence of hyperbolic motions with any positive energy constant, starting from any configuration and along any non-collision configuration. We give a geometric proof for this. Moreover, our geometric approach works for more potential which is lower semicontinuous and decrease to 0 not so slowly away from collisions.

报告人简介:

周渊,北京师范大学教授,国家自然科学基金优秀青年基金与杰出青年基金获得者。主要从事函数空间、拟共性映照、度量空间上的分析、无穷调和、退化型非线性椭圆/抛物方程等研究,已在《J. Eur. Math. Soc.》《Adv. Math.》《J. Math. Pures App1.》《Arch. Ration. Mech. Ana1.》等国际权威数学杂志发表学术论文五十多篇。

上一条:分析系列学术报告:Stability of geometric inequality in Rn: Growth other than 2

下一条:概率统计系列学术报告:Long time behaviors of mean field interactingparticle systems and McKean-Vlasov equations

【关闭】 打印    收藏