11112223333

分析系列学术报告:Stability of geometric inequality in Rn: Growth other than 2

发布人:日期:2023年11月27日 15:48浏览数:

报告题目:Stability of geometric inequality in Rn: Growth other than 2

报 告 人:张翼副研究员(中科院数学与系统科学研究院)

报告时间:20231129日  9:00-10:00

报告地点:理学院五楼数学研究中心报告厅528

报告摘要:

In the stability of geometric inequalities, usually one gets a growth with power 2 on the right-hand side of the inequality. For example, a remarkable result by Fusco, Maggi, and Pratelli says that, for any set of finite perimeter E c Rn with |E|=|B| and a barycenter at the origin, one has P(E)-P(B)≥c(n)|EΔB|2This phenomenon also appears in some other follow-up work. During my talk, I introduce some recent results on the cases where the power is no longer 2 in Euclidean spaces.

报告人简介:

张翼,中科院数学与系统科学学院副研究员,国家级人才计划入选者。博士毕业于芬兰于韦斯屈莱大学(University of Jyvaskyyla),导师为Pekka Koskela教授,之后分别在波恩大学和ETH跟随H. Koch教授和菲尔兹奖得主A. Figalli教授做博士后。主要研究方向为复分析,函数空间、无穷调和以及不等式的稳定性等,已在《Duke Math. J.》《J. Eur. Math. Soc.》《Comm. Pure Appl. Math.》《J. Math. Pures Appl.》《Arch. Ration. Mech. Anal.》等权威数学杂志发表学术论文二十余篇。


上一条:分析系列学术报告:Quasiconformal mappings, Conformal invariance of borderline Besov spaces

下一条:分析系列学术报告:Existence of hyperbolic motions to a class of Hamiltonians and generalized N-body system via a geometric approach

【关闭】 打印    收藏