报告题目:From Model to Data driven Imaging Inverse problems
报 告 人:张小群教授(上海交通大学)
报告时间:2024年5月10日 15:30-16:30
报告地点:腾讯会议(895-348-843)
报告摘要:
Imaging from downsampled and corrupted measurements are mathematically ill-posed inverse problems. In this talk, I will discuss two paradigms: model and data driven, especially sparsity and deep learning-based methods for solving linear and nonlinear imaging inverse problems. I will also discuss both the computational and theoretical aspects for solving the related large-scale variational problems and Bayesian sampling methods.
报告人简介:
张小群,上海交通大学特聘教授。主要研究方向:图像科学、医学图像处理、数据科学等问题中的数学模型与计算方法。现任Inverse Problems and Imaging、CSIAM-AM、Journal on Mathematical Imaging and Vision杂志编委,CSIAM大数据与人工智能专委会、数学与医学交叉学科专业委员会委员。