11112223333

科学计算系列学术报告:Parametric finite element methods for geometric flows

发布人:日期:2024年07月27日 22:39浏览数:

报告题目:Parametric finite element methods for geometric flows

报 告 人:苏春梅助理教授(清华大学丘成桐数学科学中心)

报告时间:2024729日  10:30-11:30

报告地点:数学研究中心528

报告摘要:

This talk includes two parts. (1) Firstly we present and analyze a semi-discrete parametric finite element scheme for solying the area-preserving curve shortening flow. The scheme is based on Dziuk's approach (SIAM J. Numer. Anal. 36(6): 1808-1830, 1999) for the anisotropic curve shortening flow. We prove that the scheme preserves two fundamental geometric structures of the flow with an initially convex curve: (i) the convexity-preserving property, and (ii) the perimeter-decreasing property. To the best of our knowledge, the convexity-preserving property of numerical schemes which approximate the flow is rigorously proved for the first time. Furthermore, the error estimate of the semi-discrete scheme is established, and numerical results are provided to demonstrate the structure-preserving properties as well as the accuracy of the scheme. (2) To avoid the clustering of nodes in the simulation of Dziuk's type schemes, we present some high-order methods based on the BGN formulation, which achieve high-order accuracy in time and exhibit good properties with respect to the mesh distribution.

报告人简介:

苏春梅,2015年博士毕业于北京大学,此后先后在北京计算科学研究中心、新加坡国立大学、因斯布鲁克大学、慕尼黑工业大学做博士后研究。2021年被聘为清华大学丘成桐数学科学中心助理教授,研究方向为偏微分方程数值解,近年来主要研究色散类方程及高振荡方程的计算方法及其分析。已在国际重要期刊如SIAM J. Numer. Anal., SIAM J. Sci. Comput., Numer. Math., Math. Comput., Found. Comput. Math., J. Comput. Phys.等发表SCI论文三十余篇。

上一条:运筹与优化系列学术报告:算法博弈论的概况与光滑性分析

下一条:分析系列学术报告:John domains in variational problems

【关闭】 打印    收藏