11112223333

微分方程与动力系统系列学术报告:Nonlinear stability threshold for compressible Couette flow

发布人:日期:2025年07月27日 23:49浏览数:

报告题目:Nonlinear stability threshold for compressible Couette flow

报 告 人:李锐博士(香港中文大学)

报告时间:2025728日  10:30-11:30

报告地点:格物楼528

报告摘要:

This talk concerns the Couette flow for 2-D compressible Navier-Stokes equations (N-S) in an infinitely long flat torus T×R. Compared to the incompressible flow, the compressible Couette flow has stronger lift-up effects and weaker dissipation. To the best of our knowledge, there has no work on the nonlinear stability in the cases of high Reynolds number until now and only linear stability was known. In this talk, we will prove the nonlinear stability of 2-D compressible Couette flow in Sobolev space at high Renolds number. Moreover, we also show the enhanced dissipation phenomenon and stability threshold for the  compressible Couette flow. This is a joint work with Prof. Feimin Huang and Dr. Lingda Xu.

报告人简介:

李锐,香港中文大学博士后,2020年本科毕业于湖南师范大学,免试推荐至中国科学院数学与系统科学研究院攻读研究生并于2025年获得博士学位。李锐的主要研究方向为可压缩剪切流的稳定性问题、粘性波的稳定性问题。

上一条:微分方程与动力系统系列学术报告:Global stability of large Fourier mode for 3-D anisotropic Navier-Stokes equations in cylindrical domain

下一条:科学计算系列学术报告:Numerical Computation for Nonnegative Matrix Factorization

【关闭】 打印    收藏