11112223333

微分方程与动力系统系列学术报告:Some recent results related to the prescribed fractional Q-curvatures problems

发布人:日期:2025年09月01日 22:22浏览数:

报告题目:Some recent results related to the prescribed fractional Q-curvatures problems

报 告 人:唐仲伟教授(北京师范大学)

报告时间:2025910日  10:00

报告地点:格物楼528

报告摘要:

In this talk, I present some results about the compactness, existence and multiplicity of the solutions to the prescribing fractional Q-curvature problem. At first, we consider the fractional order is 2\sigma on n-dimensional standard sphere when n − 2\sigma = 2, \sigma =1 + m/2, m\in N_+, we obtain some compactness and existences results. Secondly, by combining critical points at infinity approach with Morse theory we obtain existence results under suitable pinching conditions. Thirdly, we obtain some results on the density and multiplicity of positive solutions to the prescribed fractional Q-curvatures problems for \sigma\in(0,1) and \sigma\in(1,\frac{n}{2}) is an integer. This is a joint work with Dr. Yan Li, Heming Wang and Ning Zhou.

报告人简介:

唐仲伟,男,1976年生,教授,博士生导师,现担任北京师范大学数学科学学院党委书记、教学指导委员会主任。20047月在中国科学院数学与系统科学研究院应用数学所获得博士学位后到北京师范大学工作至今,20079-20099月受德国洪堡基金会资助在德国吉森大学做洪堡学者。主要研究领域为偏微分方程及非线性分析,在IMRN, JFA, Nonlinearity, Calc. Var. Partial Differential Equations, J. Differential Equations,Pacific J. Math.等期刊上发表SCI论文70余篇,主持国家自然科学基金7项。


上一条:科学计算系列学术报告:A preconditioned second-order convex splitting algorithm with a difference of varying convex functions and line search

下一条:微分方程与动力系统系列学术报告:Global stability of large Fourier mode for 3-D anisotropic Navier-Stokes equations in cylindrical domain

【关闭】 打印    收藏