报告题目:The importance of the core groupoid of a category
报 告 人:Ross Street(澳大利亚Macquarie大学)
报告时间:2025年12月11日 14:00-15:00
报告地点:Zoom会议号5277406928(密码:2025)
报告摘要:
The Dold-Kan-Puppe theorem in homological algebra and a theorem of Nicholas Kuhn in the representation theory of finite general linear groups can be seen as relying on the fact that, in the additive world, the representations of a category are, under certain conditions, equivalent to the representations of the core groupoid of that category. The core groupoid of a category is the subcategory with the same objects but only the invertible morphisms.
报告人简介:
澳大利亚Macquarie大学教授,澳大利亚科学院院士,著名代数学家。他在范畴论及其在数学各个领域的应用发展中发挥了核心作用,关于enriched范畴、2-范畴和双范畴的许多最重要的概念和成果都出自他之手;他以完整而精湛的优雅方式发展了这些理论,极大地便利了它们在具体数学问题中的应用。
学校首页
设为收藏