11112223333

代数与几何系列学术报告:The importance of the core groupoid of a category

发布人:日期:2025年12月11日 08:59浏览数:

报告题目:The importance of the core groupoid of a category

报 告 人:Ross Street(澳大利亚Macquarie大学)

报告时间:20251211日  14:00-15:00

报告地点:Zoom会议号5277406928(密码:2025

报告摘要:

The Dold-Kan-Puppe theorem in homological algebra and a theorem of Nicholas Kuhn in the representation theory of finite general linear groups can be seen as relying on the fact that, in the additive world, the representations of a category are, under certain conditions, equivalent to the representations of the core groupoid of that category. The core groupoid of a category is the subcategory with the same objects but only the invertible morphisms.

报告人简介:

澳大利亚Macquarie大学教授,澳大利亚科学院院士,著名代数学家。他在范畴论及其在数学各个领域的应用发展中发挥了核心作用,关于enriched范畴、2-范畴和双范畴的许多最重要的概念和成果都出自他之手;他以完整而精湛的优雅方式发展了这些理论,极大地便利了它们在具体数学问题中的应用。

下一条:代数与几何系列学术报告:On the rational points of bounded height in cubics

【关闭】 打印    收藏