11112223333

概率统计系列学术报告:Order-restricted hypothesis tests for nonlinear mixed-effects models with incomplete data

发布人:日期:2025年12月23日 12:44浏览数:

报告题目:Order-restricted hypothesis tests for nonlinear mixed-effects models with incomplete data

报 告 人:张艺馨副研究员(中国科学技术大学)

报告时间:20251226日  14:30

报告地点:格物楼528报告厅

报告摘要:

Order-restricted hypothesis testing problems frequently arise in practice, including studies involving regression models for longitudinal data. These tests are known to be more powerful than tests that ignore such restrictions. We consider order-restricted tests for nonlinear mixed-effects models with incomplete. We propose to use a multiple imputation method to address incomplete data issues, since this approach allows us to use existing complete-data methods for order-restricted tests. Some theoretical results are presented. We evaluate our proposed methods via simulation studies that demonstrate they are more powerful than either a competing naive method or a two-step approach to testing hypotheses. We illustrate the use of our proposed approach by analyzing data from an HIV/AIDS study.

报告人简介:

张艺馨,中国科学技术大学数学学院副研究员。本科毕业于山东大学,2023年获得加拿大约克大学统计博士学位。主要研究领域是生物医学数据的挖掘与分析,包括纵向数据、缺失数据、多重插值、约束假设检验、生存分析、机器学习及生物统计。在BMC BioinformaticsCanadian Journal of statistics等杂志发表多篇论文。

上一条:概率统计系列学术报告:Model-based approach to assess replicability for large-scale high-throughput biomedical studies

下一条:代数与几何系列学术报告:Characters of GL(n,q) and vertex operators

【关闭】 打印    收藏