11112223333

微分方程与动力系统系列学术报告:Attractive Schrodinger systems with mass sub-critical and super-critical cases

发布人:日期:2025年12月25日 21:50浏览数:

报告题目:Attractive Schrodinger systems with mass sub-critical and super-critical cases

报 告 人:龙薇教授(江西师范大学)

报告时间:20251225日  14:30

报告地点:格物楼307

报告摘要:

In this talk, we consider normalized solutions for a class of attractive Schrodinger systems. For both mass sub-critical and super-critical cases, by a unified approach, we establish the existence and local uniqueness of normalized multi-peak solutions for the above Schrodinger system. Compared with the previous results, in addition to non-radial potentials and a unified approach to deal with both sub-critical and super-critical cases, another key difference is to build the uniform continuity of the $L^2$-norms of unconstrained solutions with respect to Lagranian multiplier. This is a joint work with Yuke He and Benniao Li.

报告人简介:

龙薇,江西师范大学教授、博士生导师,主要从事变分法与非线性椭圆方程的研究,在Ann. Sc. Norm. Super. Pisa Cl. Sci.Calc. Var. Partial Differential EquationsJ. Differential EquationsProc. Roy. Soc. Edinburgh Sect. A等学术期刊上发表论文40多篇,主持了3项国家自然科学基金项,入选江西省“杰青”和江西省“双高”人才计划,获江西省自然科学二等奖2项。

上一条:微分方程与动力系统系列学术报告:Local well-posedness of the skew mean curvature flow for large data

下一条:概率统计系列学术报告:连通性分析的完善路径——基于自助法的DCC-GARCH模型拓展框架

【关闭】 打印    收藏