11112223333

微分方程与动力系统系列学术报告:Local well-posedness of the skew mean curvature flow for large data

发布人:日期:2026年01月05日 16:07浏览数:

报告题目:Local well-posedness of the skew mean curvature flow for large data

报 告 人:黄佳习副研究员(北京理工大学)

报告时间:2026113号  10:00

报告地点:腾讯会议295-261-160

报告摘要:

In this report, I will introduce the large data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension d>=2. This is achieved by introducing several new ideas: (i) a time discretization method to establish the existence of smooth solutions, (ii) constructing the orthonormal frame by a parallel transport method and a lifting criterion, (iii) introducing intrinsic fractional function spaces, (iv) deriving a difference equation to prove the uniqueness result. This is based on joint work with Daniel Tataru.

报告人简介:

黄佳习,北京理工大学副研究员。研究方向为色散方程,特别是有几何背景的色散方程。主要从事薛定谔流、波映射、Ericksen-Leslie双曲液晶方程和斜平均曲率流等几何色散方程的适定性和长时间行为的研究。研究成果发表于包括CMP, IMRN, SIAM, JDE在内的国际期刊数篇。

下一条:微分方程与动力系统系列学术报告:Attractive Schrodinger systems with mass sub-critical and super-critical cases

【关闭】 打印    收藏