11112223333

微分方程与动力系统系列学术报告:Compactness and stable regularity in multiscale homogenization

发布人:日期:2022年07月14日 12:55浏览数:

报告题目:Compactness and stable regularity in multiscale homogenization

报 告 人:钮维生教授(安徽大学)

报告时间:2022717日  15:00-16:00

报告地点:数学中心智慧教室

报告摘要:

We report some quantitative results in the homogenization of second-order elliptic systems with periodic coefficients that oscillate on multiple separated scales. The results include the uniform $C^\alpha$ and Lipschitz estimates we obtained recently. This is based on the joint work with Jinping Zhuge.

报告人简介:

钮维生,安徽大学教授,博士生导师,安徽省学术与技术带头人后备人选,近年来主要从事偏微分方程与无穷维动力系统均匀化理论的研究,在Mathematische Annalen,Journal of Functional Analysis, Communications in Partial Differential equations, Journal of Differential Equations等期刊上发表多篇论文。先后主持国家自然科学基金面上、青年项目,以及多项省部级项目。

上一条:微分方程与动力系统系列学术报告:Global C^{1, \alpha} regularity for the generalized solution to the Dirichlet problem of degenerate Monge-Ampère equations

下一条:微分方程与动力系统系列学术报告:Qualitative analysis of solutions of nonlinear elliptic equations

【关闭】 打印    收藏