报告题目:III-posedness issue on the Oldroyd-B model in the critical Besov space
报 告 人:李金禄(赣南师范大学)
报告时间:2025年4月19日 9:00-10:00
报告地点:格物楼528
报告摘要:
It is proved in\cite[J. Funct. Anal., 2020]{AP}that the Cauchy problem for some 0ldroyd-B model is well-posed in $\B^{d/p-1}_{p, 1}(\R^d)\times \B~{d/p}_{p,1}(\R^d)$ with $1\leg p<2d$. In this paper, we prove that the Cauchy problem for the same 0ldroyd-B model is ill-posed in $\B^{d/p-1}_{p,r}(\R^d) \times \B^{d/p}_{p,r}(\R^d)$ with $1\leg p\leq \infty$ and $1<r\leq\infty$ due to the lack of continuous dependence of the solution.
报告人简介:
李金禄,男,副教授,硕士生导师,赣南师范大学。中山大学博士,广州大学博士后,入选江西省省级人才计划。主要从事非线性偏微分方程及相关问题的数学理论研究。在《Adv. Math.》《J. Funct. Anal.》《SIAM J. Math. Anal.》《J. Differential Equations》《J. Geom. Anal.》《J. Nonlinear Sci.》等国际刊物发表学术论文50余篇;主持包括国家自然科学基金在内的省部级以上科研项目8项。